UCRL- 91476

CiWGulnTilN GUPY PREPRINT
ciges T RECALL
S el WEEKS

OPTICAL GUIDING BY A FREE ELECTRON LASER

E. T. Scharlemann
A. M. Sessler
J. S. Wurtele

This paper was prepared for submittal to
Workshop on Coherent/Collective Propagation of Relativistic
E Electron-Beams/Electromagnetic Radiation
Villa Olmo, Como, Italy
September 13-16, 1984

October 16, 1984

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.


Important Information
Also published in Nuclear Instruments and Methods in Physics Research, Volume 239, Number 1, pages 29-35, 1985. 


DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



-1 -
OPTICAL GUIDING IN A FREE ELECTRON LASER
E. T. Scharlemann
University of California
Lawrence Livermore National Laboratory*
Post Office Box 808/L-321
Livermore, CA 94550
A. M. Sessler and J. S. Wurtele**
Lawrence Berkeley Laboratory"
One Cyclotron Road/58-101
Berkeley, CA 94720

October 16, 1984

ABSTRACT

The coherent interaction between an optical wave and an electron beam
in a free electron laser (FEL) is shown to be capable of optically guiding _
the light. The effect is analyzed using a two-dimensional approximation
for the FEL equations, and using the properties of optical fibers. Re-
sults of two-dimensional (cylindrically symmetric) numerical simulations
are presented, and found to agree reasonably well with the analytically
derived criterion for guiding. Under proper conditions, the effect can

be large and has important appliications to short wavelength FEL's and to

directing intense light.
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1. INTRODUCTION

It has long been known that the coherent interaction between the light
and the electron beam 1in an_FEL producés a.phase shift of the ligﬁt [1],'
and that the sigﬁ of the effect is such that the light is refraéted toward . -
the electron beam [1,2]. In recent numerical simulations we have observed
.guiding of the light by the electron beam, as 1f the electron Beam were an

optical fibér [3,4]. These observations stimulated the investigation

réported on here.
_In this work we treat the bunched electron beam as if it were an

optical fiber with a éonétant'iﬂde§'of refraction and a well-defined edge.
In Sec. II we review the properties_of such step-prpfile optical fibers

- for a real or complex index of refrgction. In Sec. III, we use one-
dimensional FEL theory to evaluate the index of refraction of the electron
beam, and present numerical simulations to illustrate optical guiding. We
then eximine, in Sec. IV, guiding iﬁ the exponential growth regime.. We
find that the intuitive criterion for guiding during exponential growth,

;zr >1 , (1.1)

can be strongly violated. Here the fieid.amplitudg-grows as é°;, anq z,
is the Rayleigh length obtained from the electron beam size and Tight
wavelength. The analytical derivations are compared with the results of

numerical simulations. F1na11y, in Sec. V, we mention several pptential

applications of self-guiding.
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II. OPTICAL PROPAGATION IN FIBERS

In this section, we reView the salient facts about circular step-

profile optical fibers, with emphasi§ on the LPdl mode, the lowest order,

linearly polarized mode. This is the mode that the numerical calculations

model, and which one would expect to be excited in an FEL with a linear

wiggler. We determine the value of the fiber parameter (defined below)

necessary for optical guiding.
The usual analysis of step profile fibers t3.4] assumes that the

fiber consists of a central core of radius a and index of refraction n,

and a cladding of index N.1- In our treatment, the core is the electron

beam and the cladding is free space.
‘We can make the assumption that the fiber is weakly guidiﬁg:

In =1] <« 1 . (2.1)

This inequality is quite good for all cases of interest, and is consistent

with the assumption of slowly varying phase of the optical field:

dé <« k

az (2.2)

familiar from FEL theory.
Following Marcuse [4], we consider guided modes with only one

transverse electric field component Ex (but both magnetic and electric

.longitudfnal components), for which

sin(vp)

cos (vh) |
E, = AJv(xr) '(Z :), r<a , (2.3)




3, (xa) cos(vé) \
E. -A—Iﬁ (T) ',r.>a . (2'4)
’ sin(vﬂ) :

In Eq. (2.3) and (2.4), Jv and Hv1 are Bessel functions_and_Hankel

functions of the first kind, fespectively. The arguménts of the functions

are
x =\nk? - g% | (2.5)
y=y8Z-k2 , | . " (2.6)
k=2 , (2.7)
and the field is assumed to vary as

Continuity of B, and E; at the fiber edge yields the dispersion relation.

deplka)  ¥K i (va) |
3,k " K (va) (2.9)

with

The quantity V is called the "fiber parameter”. |

The .condition for mode cutoff in a fiber is

In this 1imit the dispersion relation, Eq. (2.9), simplifies to

Jl(vc) =0 ifva0 , (2.1?) :
and

J(Ve) =0 ifva=l . (2.13)

2+ v m(n? - 1) k22 . (2.10)
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In Eq. (2.12) V. is the value, at cutoff, of the fiber parameter V.

Clearly, since increasing V means more zeros of the Bessel functions

which satisfy V. < v, the fiber parameter measures the number of guided
modes supported by the fiber. Note that from Eq. (2.12) there is no cut-
off for the LP01 mode. (The first index labels the Bessel function, '

the second labels the zero's.)
While formally there is no cutoff for the LP01 mode, 1f is incorrect

to think of the mode as bound by the fiber for all V > 0. To examine

this more closely, near cutoff (ya << 1) the v = 0 modes satisfy:

JO(V) o
vya = 1.12 exp - V—JI-(V)- . . _ (2-14)

Since the mode amplitude_f;lls off radially as exp(-yr) for large yr, l/y
measures the radiﬁl extent of the mode. An examination of Eq. (2.14)
shows the mode eitends far outside the beam for V <« i.

For the LPy mode to be conéidered guided, we will somewhat arbi-
trarily require that the 1/e point of E, be within 5 times the fiber

radius. This condition corresponds to demanding that
v 51 - (2.15)

The analysis can be extended to a fiber with gain. (or lbss) by
permitting V to be complex. The dispersioh relation, Eq. (2.9), is
unchanged, but « and vy can now also be complex. From -numerical solution

of the complex dispersion relation, we find the above criterion (2.15)

generalizes to . : 3
Re(v?) + 1/2 Im(v?) > 1 . 6@' (2.16
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The nature of the solution. however, 1s different — a cdmplex Y ;ofrg—
| sponds to propagation of radiation away from thé fiber, balanced by gain

in the fiber.
If we examine 11ght'pr6pagat10n in an infinite parabolic medium with

gain [5] we obtain an analogous criterion for guiding.

III. .THE INDEX OF REFRACTION OF AN ELECTRON BEAM

3.1 General Analysis _ . ,
The electron beam in a high-gain FEL physically bunches on an optical

wavelength; because of the bunching, the beam has an effective index of
refraction greater than unity. This is in sharp contraét to the behavior
of an unmagnetized (and unbunched) plasma, and 1s‘thé basis for the

optical guiding effects described in this paper. .In the previous section,

we have presented the criterion that the index of refrqcfion must saf1sfy '

in order for a fiber t0-gdide the laser beam; in tﬁis section we derive
the index of refraction of an electron beam in an FEL.

As a further preiiminary, we wish to draw a distinction between two
- effects, which we will label "refractive éuiding“.and "gain focusing".
The first refers to the familiar guiding of an optiéa] beam by a fiber
with a real index of refraction. The power in the 6ptical beam
propagates exactly parallel tp the fiber. The secohd, gain focusing,
refers to self-similar propagation of an optiéal.beam profile around a
fiber with gain: power diffracts away from the fiber, but the gain in

the fiber more than balances diffraction. The result is an optical .
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profile that grows in amplitude, but does not change shape (hente the
description as self-similar propagation). The distinction between these
two cases is primarily in the natﬁré of the index of refractioh. Gain
focusing occurs around a fiber wjth_a purely imaginary 1hdex of refrac-
tion; refractive guidiﬁg when the fndex of refraction is purely reél. In
an FEL, the effective index of refraction is complex, producing a mixture

of refractive guiding and gain focusing; in the examples we present,

refractive guiding dominates.
Refractive guiding alone dominates in at least two circumstances: ,

a) after saturation in an untapered wiggler (when the light intensity is’
roughly constant), and b) in a tapered wiggler. The real part of the
index of refraqtioh of an optically bunched beam comes from the FEL

equationé as formulated in Ref. 6:

- 2eed 3, L
Re(n)~1= 1d$ _ <cos¢> . S (3.1)

Gain focusing may domﬂnate:in the exponential gain regime of an FEL with
an untapered wiggler. The general expression for the imaginary paft of
the index of refraction comes from the amp]itude equation: .
1de, 2veda, Gqny |
Im(n) = ]‘-—1—5 - PRALL (3.2)
& 2 me ke, Y
In Eq. (3.1) and (3.2), e, is the normalized r.m.s amplitude of the

electric field:




e |Esf
esi= 2
\/2 mc

(for a linear wiggler); a_ is the dimensionless r.m.s. vector potential

(3.3)

of the wiggler field:

e |8 : .
Pwl (3.4)

aw;l\/_-k mc?

where k, 1s the wiggler wavenumber. The current density js J, v is the -
phase of an electron in the pondermotive potential well; aﬁd the brackets
denpte an average over the electron distribution. MWe use Gaussian c.g.s.

units.
From Eg. (3.1) and (3.2) we see ‘that refractive guiding and gain- -

focusing are distinguished simply by whether< C:S~ll> or <_s:"¢>domi_—
nates; i.e., by the relative phase between the electron bunches and the

" laser electric field.
The expressions for n in Eq. (3.1) and (3.2) are derived for a

uniform infinite medium and a plane electromagnetic wave. ~We use the

value of the index on. the electron beam axis to determine the fiber

parameter V. The relationships among d¢/dz, de /dz and n are changed by

two-dimens fonal effects, as described in Sec. IV.

3.2 Examples of FEL Guiding
In this section, we present numerical simlations to 1llustrate
guiding in the exponential gain regime (which we discuss in detail in

Sec. IV), and guiding in an untapered wiggler after saturation. The
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simulations were performed at LLNL with the 2-dimensional FEL code FRED.
An earlier version of the code is described in Ref. [f]_and-[BJ: the code
has since been modified to include full betatron motion of the electrons.
The code follows an axiéymnetric laser beam aroqnd an electron b'eam that
bunches longitudinally (in ¢ [1]). Axisymmétric di ffraction effecfs are
fully 1nc]uded, via the paraxial wave approximation; refractive and gain

effects are included through the local source terms provided by the

electron beam. .
The two categories of FEL guiding can be_illustrated with a single

simulation, based on the design of an FEL in a ;torage ring. The
parameters of_the'simulation are Tisted in Table I. Figﬁre l1is a
three-dimensiona{ contour plot of.laser ihténsity versus r and z. The
initial bump in the laser 1ﬂtensfty on axis is the ihput 30 MW laser beam
‘at a focus; guiding {s evidenf in the later gfowth of the laser field,
and in the saturated regime (past 16 m). The guiding is visible more
quantitatively in Figs. 2 fhrough 4, which are cross-sections of'tﬁe_
laser proffle gt'several values of'i. ‘The laser profile is neariy
constant over 60 Rayleigh lengths of propagation. Figure 2 is a
cross-section in the exponéntjal gajn regime, Fig.'3 in the saturated
regime, and Fig. 4 at the end of the wiggler. An'intéresting effect of
the guiding is illustrated in Fig. 5, ﬁhfch is a plot of the phase of the
electric field versus radius at the_end of the yigglér: the décrease in

¢ with increasing r indicates that the output laser beam is actually

convergihg to a focus 8 cm beyond the end of the wiggler.
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3.3 Guiding After Saturation
After saturation, the guiding of the light 1s.ent1reiy refractive,

and Eq. (3.1) is applicable. We can generally take the bunching term,
<(cos4017>. to be::IIZYo, where'Yo is the average electron Loreﬁtz'
factor. Cosymust of course remain less than or edual to unity, and
perfect bunching at y=0 never occurs. Then, for the parameters of the
simulation, we.find s |

Re(V) =1 , - | (3.5) .

after saturation. _
For guiding of the light after saturation, we obtain in general’
k
2 . 2el 3y
. VE = , —= > 1 , (3.6)
m? Yofs - | o 3

where I is the total current. Hith a slight modification, this equation
is applicable to tapered wiggler amplifiers; the expression for v2 must
be multiplied by =‘2ftrapped°°§¢¥' where ftrappgd is the fraction of ;he
electrons trapped in the decelerating ponderomotive potential well [1],

and ¢; is the resonant y of an é]ectroh that decelerates with the

bucket.

IV. GUIDING IN THE EXPONENTIAL GAIN REGIME

We can analyze the guiding in- the exponential gain regime by extendé
ing the linear analysis in Ref. [9] to include the éffects of diffraction

(and incidentally, energy spread). To do so, we write the longitudinal
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electron equations derived by Kroll, Morton, and Rosenbluth [1] in
complex form:

dy, " o f : . .
3—1 = Re |i M8 e ei‘j] . ' - (4.1)
Y 4 Y j S . .

4 i s f | S
a;‘l = Re [k, - 2_"2 (1+ awz) - ng.e_S. e“‘J] . (4.2)
'Yj Yj :

o

In Eq. (4.1) and (4.2), o 1s the phase of an electron with respect to a
plane wa#e; in terms of ¢J and ¢, '

ej=¢j“ . (4-3)

The factor f3 is the uell-knoﬁn difference of Bessel functions [10].
The complex field equation follows from Eq; (3.1) and (3.2), but

with addition of a.transverse gradient term:

2 ..
e, 2vie a .3 z eloy 1V & . (6.4)
= 0 'Yy Y
Y3 mc3 BN j TJ 2k .
where e is now a complex field amplitude. The total number of electrons

is N. The transverse gradient term follows directly from the paraxial
wave equation [11]. The recognition that a guided laser field propagates
with an unchanged profile permits us to approximate the transverse

gradient term very simply:

v,“ e e ' :
1S S | (4.5)
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where Z. = szlz for a Gaussian profile with an electric field 1/e radius
of w. The self-similar profile of a guided beaﬁ 1§ not Gaussian; hence
the approximate nature of Eq.. (4.5).

Equations (4.1), (4.2), and (4.4) can now all be linearized, taking
e; to vary as eix(zl zr). To _1n¢orporate an electron energy spfead; we
také a square distribution for the electron energy:
f(y) -#2%:’- » Y-l <TY<vgt Ay

= 0 , otherwise. ~ (4.6)

The result of linearization is a cubic in the complex, dimensionless

parameter i:

3, .2 PR
AT+ [1+2Akozr]

Yol

2 2 al| - : '
+ 2 [2 Ako z.* (Akozr) - 4(sz-r) —-7-] (4.7)

2 2 &
*Akz, t (Akozr) '4(szr) : —'lz- =0 .
. Yo .

Here

Akoi kw - Z—k—z- (1+ awz) ' ' (408)
- 2y,

fs a parameter that measures the departure from resonance of the center,
1o» Of the electron distribution function, and '

' 2.2 _

A fg 2 | (4.9)

4

. 4zxed
A 5 —— r

3
mc 70




- 13 -
is the dimensionless barameter that measures the coupling between the
electron beam and the 1light.

One's natural inclination is to attempt a Simp]ification.of this
cubic, identifying the dominant terms and discarding the rest. - Unfortu-
nately, for many applications, all terms in the cubic are comparable, and
the standard general expression for the anal)tip solution to a cub*c must
be used. |

The expression for the fiber parameter V of the electron.beam in,‘ '
terms of a is simple, aﬁd comes from Egs. (3.1), (3.2), (4i4) and (4.5):

- 2 - R
vi oo ka4 . (4.10)

%y

We take the 1/e point of the Gaussian transverse density profile 6f the
electron beam to be an effective fiber radius. For thq parameters of the

simulation described in Section 3.3, with w=0.02 cm {as obsérvediiq the

simulation), the cubic yields'

v ~ 1.03 - 0.12 - | |
| . (4.11)
Our criterion for guiding [Eq. (2.16)] is satisfied, although the laser
beam is somewhat more tightly confined to the electron beam than |V] =1
would predict.” In terms of either,tﬁe assumed w, or V, the discrepancy

is only about 20 percent.
The value for|Im(x)|is consistent with the exponential gain observed

in the simulation. The fact that. Im(i) is much less than unity indi-
cates that the gain 1engthf1s much longer than the Rayleigh range,
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tstrongly violating the naive brjterion mentioned in the Introduction,
Eq. (1.1).

The general procéduré for evaluating the 1mportance.of guiding laser
1ight by an electron beam is iterative. The.cubig, Eq; (4.7), is solved
with an assumed value for w; twice the electron beim radius (w-Za).is a.
good initial guess. From the solution for 1, Eq. (4.10) gives V. The :
value of V determines, through Eq. (2.9) and (2.10), values for y and .
The quantity w. is then given by

w=1] |Re(y)| .
Iterating produces a consistent solution for fhe l&ser beam size and the

(4.12)

growth rate, if a guided solution exists.

We have assumed that the transverse derivative term in Eq. (4.5) can
be adequately approximated by using w, the 1ight beam size — this
assumption permit%ed us to use the Rayleigh range of the laser profile in
the derivation. When w >> a, or V2 < 1, this assumption is Violated; for

VZ < 1, the transverse derivative term must be written as

viie =-le o (8.a2)

with « obtained from the fiber dispersion relation. An interesting

example of this Tlimit occurs when the electron beam current becomes very

small (A > 0), with aky = ay = 0. Then the cubic Eq. (4,7) reduces to

3, .2 - | "
AT+ A szr = 0. _ - (4.13)

Perturbing around the roqts A=0, 0, ~ 1 obtained wifh A=20, we

find
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A= 24 Az, -Akz. . (4.14)

All three roots correspond to V2 << 1 and w> a, as'bne would expect..
The growing root in Eq. (4.13), 2 = - 1 JAk z_, is very different
from what one would expect from one-dimensional theory, with or without a

" fi1l1 factor. The growth rate is less, and sca1és as Jll2 rather than

J1’3; the physical reason for the difference is the importance of

diffraction in this limit. _
As one would ekpect, diffraction decreases the 1inear growth rate.
The effect of diffracfion on gﬁiding is unexpected, however, and can be
seen from the form of Eq. (3.1) and (3.2). For a given bunching |
<(cosd) /y>, diffréction rédupes the electric field e. The index of
refraction of the electron beam is thereby 1ncréa$ed. enhancing the.
guiding. It is this enhancement that permits exponential gain even when _

Eq. (1.1) is violated. -

V. APPLICATIONS

We have been motivated in this study, and have emphpsi;ed in this
paper, the importance of optical guiding (under some circumstances) to |
FEL performance. As we have seen, the phenomené can be rather importénf
and thus one can contemplate FEL's of exceedingly long length. In this
way, it appears possible tb have a 'small electron beam radius and a very

long wiggler (hence a very high gain FEL) even in_the VUV range.
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Because of the effect of optical guiding it is possible to direct
and focus the FEL—generated-optjcal beam. This is of interest for very
1nt§nse beams, such as afg contemplated for laser inertial fusion, where
lenses and m1§rors of conventional materials would bé'destfoyed h} the
Tight. Use of optical guiding appears to be relatively straightforward -

since a simple magnetic deflection of the electron beam will result in'a

deflection of the light.'
It should be noted that_optical guiding applies, also, to very short

wavelength light, which does not interact coherently wifh normal material.
Application of this to the VUV and to soft X-rays would appear to make
_possible some interesting devices. | '

- Optical guiding will be effective in an Inverse Free Electron Laser
(IFEL) as well as in an FEL (A. Gaupp, private communication) and hence
can be important in the operation of an IFEL, but this requires a large
accelerated current. ' '

Finally, we note that ppt1ca1 gufding may make possible resonant
ring FEL's (J.'D. Dawson, private communication). This requires FEL
operation when the FEL is no longer straight, which can be achieved with

an isochronous ring. It appears possible, in principle, to have an FEL

who;e gain 1s modest per unit length, but whose action extends over many .

circuits of the ring.
‘After the completion of this work our attention was drawn to work by

'G. T. Moore wﬁlch-hicely compiiments that presented here [12].

———
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Table I

.Simulation Parameters

270 A

Current (I)
Electron beam radius in the wiggler (a) 0.01 cm
Electron Lorentz factor ( o) 2000

" Fractional electron eriergy spread | 1.2¢1073

(r.m.s. £¥J

Laser wavelength (2x/k) 2500 A
Input laser power 30 MW
Dimensionless r.m.s. wiggier Vectqr' - 4.352

potential (ay) _ _ . ,
Wiggler length : 30m
Wiggler period (2x/ky) : 10 cm
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FIGURE CAPTIONS
A three-dimensional plot of laser intensity vs. r and z inside
the wiggler. |
A cross-section of the laser intensity, with a least-squares
Gaussiaﬁ fit, at z = 10 m, in the exbonential gain regimé.
The 1/e point of the electric field for the Gaussian fit (the
1ight beam radius) 1s at 0.024 cm .
A cross-section of the laser intensity, with a least-squares
Gaussian fit, at z = 25 m, after saturation. The light beam
radius is 0.023 cm. _
A cross-section of the lasef 1ntensitj, with a least-squares
Gaussian fit, at z = 30 m, the end of the wigglér. The Tight
beam radius is 0.024 cm. |
A cross-section of the phase ¢ of the complex electric field
amplitude at the end of the wiggler, z = 30 m, with a
least-squares parabolic fit. The decrease of ¢ with
increasing r indicates that thé lighf is focusing at the end

of the wiggler.
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